AlgemeneGezondheid.Org

Mayo Clinic researchers to present XOMA 052 data at 101st AACR Annual Meeting

October 31, 2017

Daniel describes our metabolism as a mechanism that can be pushed and pulled like the bellows of an accordion. One thing the researchers want to determine is just how wide the range is, and modern methods of high-performance analytics make that possible. "The HuMet study actually gave the impetus for the entire field of research," TUM food chemist Thomas Hofmann is pleased to note. "All researchers in greater Munich interested in advancing the field of metabolomics, for example our colleagues from the Helmholz Zentrum Muenchen, are collaborating with us in the Munich Functional Metabolomics Initiative." All participating researchers received a portion of all plasma and urine samples to evaluate using their own special measuring methods. Prof. Hofmann's team relied primarily on the methods of liquid chromatography-tandem mass spectroscopy and NMR spectroscopy.

"We need to develop the methods further to do justice to the complexity of the body's metabolism. Today, we are at a level comparable to that of digital cameras in the 1980s," says Hofmann. "We must increase the resolution of our analytical camera to obtain a sharp image of all metabolic by-products." And if we want to describe metabolic dynamics next, we will need to make a short movie. "For this we want to automate our procedure so that it will deliver a large number of high-resolution images over a short period of time. These can then be combined into a sequence, analogous to a flip-book."

Once this becomes possible, the researchers will be able to look deep into metabolic processes. Their biggest hope: that metabolomics will one day enable custom-tailored therapies for people with metabolic disorders and nutrition plans for people wanting to lose weight.

Source: Technische Universitaet Muenchen